
Security Assessment

BYFCOIN

9 May 2024

This security assessment report was prepared by
SolidityScan.com, a cloud-based Smart Contract
Scanner.

Self-published
This automated audit report was
Self-published by the user. To learn
more about our published reports
click here.

SolidityScan A security assessment report

https://docs.solidityscan.com/report/

Table of Contents.

01 Vulnerability Classification and Severity

02 Executive Summary

03 Findings Summary

04 Vulnerability Details

USE OF FLOATING PRAGMA

LONG NUMBER LITERALS

MISSING EVENTS

BLOCK VALUES AS A PROXY FOR TIME

IF�STATEMENT REFACTORING

MISSING UNDERSCORE IN NAMING VARIABLES

NAME MAPPING PARAMETERS

USE CALL INSTEAD OF TRANSFER OR SEND

USE SCIENTIFIC NOTATION

VARIABLES SHOULD BE IMMUTABLE

BYTES CONSTANT MORE EFFICIENT THAN STRING LITERAL

CHEAPER CONDITIONAL OPERATORS

CHEAPER INEQUALITIES IN IF��

CHEAPER INEQUALITIES IN REQUIRE��

DEFINE CONSTRUCTOR AS PAYABLE

REVERTING FUNCTIONS CAN BE PAYABLE

LONG REQUIRE/REVERT STRINGS

Page 1 SolidityScan A security assessment report

OPTIMIZING ADDRESS ID MAPPING

PUBLIC CONSTANTS CAN BE PRIVATE

USE OF SAFEMATH LIBRARY

SMALLER DATA TYPES COST MORE

STORAGE VARIABLE CACHING IN MEMORY

USE SELFBALANCE�� INSTEAD OF ADDRESS�THIS�.BALANCE

VARIABLES DECLARED BUT NEVER USED

05 Scan History

06 Disclaimer

Page 2 SolidityScan A security assessment report

1. Vulnerability Classification and Severity

Description

To enhance navigability, the document is organized in descending order of severity for easy reference. Issues are
categorized as Fixed, Pending Fix, or Won't Fix, indicating their current status. Won't Fix denotes
that the team is aware of the issue but has chosen not to resolve it. Issues labeled as Pending Fix state that the
bug is yet to be resolved. Additionally, each issue's severity is assessed based on the risk of exploitation or the potential
for other unexpected or unsafe behavior.

Critical

The issue affects the contract in such a way that funds
may be lost, allocated incorrectly, or otherwise result
in a significant loss.

High

High-severity vulnerabilities pose a significant risk to
both the Smart Contract and the organization. They
can lead to user fund losses, may have conditional
requirements, and are challenging to exploit.

Medium

The issue affects the ability of the contract to operate
in a way that doesn’t significantly hinder its behavior.

Low

The issue has minimal impact on the contract’s ability
to operate.

Gas

This category deals with optimizing code and
refactoring to conserve gas.

Informational

The issue does not affect the contract's operational
capability but is considered good practice to address.

Page 3 SolidityScan A security assessment report

02. Executive Summary

BYFCOIN

0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC
https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad0…

Published on 09 May 2024

Language

Solidity

Audit Methodology

Static Scanning

Contract Type

-

Website

-

Publishers/Owner Name

BYFCOIN

Organization

-

Contact Email

-

Security Score is GREAT
The SolidityScan score is calculated based on lines of code and weights assigned to
each issue depending on the severity and confidence. To improve your score, view the
detailed result and leverage the remediation solutions provided.

This report has been prepared for using SolidityScan to scan and discover vulnerabilities and safe coding practices in their
smart contract including the libraries used by the contract that are not officially recognized. The SolidityScan tool runs a
comprehensive static analysis on the Solidity code and finds vulnerabilities ranging from minor gas optimizations to major
vulnerabilities leading to the loss of funds. The coverage scope pays attention to all the informational and critical
vulnerabilities with over �100�� modules. The scanning and auditing process covers the following areas:

Various common and uncommon attack vectors will be investigated to ensure that the smart contracts are secure from
malicious actors. The scanner modules find and flag issues related to Gas optimizations that help in reducing the overall Gas
cost It scans and evaluates the codebase against industry best practices and standards to ensure compliance It makes sure
that the officially recognized libraries used in the code are secure and up to date

The SolidityScan Team recommends running regular audit scans to identify any vulnerabilities that are introduced after
introduces new features or refactors the code.

80.55

Page 4 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC

3. Findings Summary

0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC
ETHEREUM �Ethereum Mainnet) View on Etherscan

Security Score

80.55/100
Scan duration

2 secs
Lines of code

273

This audit report has not been verified by the SolidityScan team. To learn more about our published reports.
click here.

0
Crit

0
High

0
Med

5
Low

28
Info

54
Gas

87
Total Vulnerabilities

found

Page 5 SolidityScan A security assessment report

ACTION TAKEN

0
Fixed

2
False Positive

0
Won't Fix

86
Pending Fix

Bug ID Severity Bug Type Detection Method Line No Status

SSB_318917_41 Low USE OF FLOATING PRAGMA Automated L2 � L2 Pending Fix

SSB_318917_42 Low LONG NUMBER LITERALS Automated L70 � L70 Pending Fix

SSB_318917_43 Low LONG NUMBER LITERALS Automated L74 � L74 Pending Fix

SSB_318917_44 Low LONG NUMBER LITERALS Automated L79 � L79 Pending Fix

SSB_318917_45 Low LONG NUMBER LITERALS Automated L84 � L84 Pending Fix

SSB_318917_34 Low MISSING EVENTS Automated L140 � L142 Pending Fix

SSB_318917_61 Informational BLOCK VALUES AS A PROXY FOR TIME Automated L136 � L136 Pending Fix

SSB_318917_62 Informational BLOCK VALUES AS A PROXY FOR TIME Automated L198 � L198 Pending Fix

SSB_318917_83 Informational IF�STATEMENT REFACTORING Automated L262 � L268 Pending Fix

SSB_318917_21 Informational MISSING UNDERSCORE IN NAMING VARIABLES Automated L46 � L46 Pending Fix

SSB_318917_22 Informational MISSING UNDERSCORE IN NAMING VARIABLES Automated L47 � L47 Pending Fix

SSB_318917_23 Informational MISSING UNDERSCORE IN NAMING VARIABLES Automated L48 � L48 Pending Fix

SSB_318917_24 Informational MISSING UNDERSCORE IN NAMING VARIABLES Automated L49 � L49 Pending Fix

SSB_318917_25 Informational MISSING UNDERSCORE IN NAMING VARIABLES Automated L5 � L9 Pending Fix

SSB_318917_26 Informational MISSING UNDERSCORE IN NAMING VARIABLES Automated L11 � L15 Pending Fix

Page 6 SolidityScan A security assessment report

Bug ID Severity Bug Type Detection Method Line No Status

SSB_318917_27 Informational MISSING UNDERSCORE IN NAMING VARIABLES Automated L17 � L24 Pending Fix

SSB_318917_28 Informational MISSING UNDERSCORE IN NAMING VARIABLES Automated L26 � L30 Pending Fix

SSB_318917_11 Informational NAME MAPPING PARAMETERS Automated L46 � L46 Pending Fix

SSB_318917_12 Informational NAME MAPPING PARAMETERS Automated L47 � L47 Pending Fix

SSB_318917_13 Informational NAME MAPPING PARAMETERS Automated L48 � L48 Pending Fix

SSB_318917_14 Informational NAME MAPPING PARAMETERS Automated L49 � L49 Pending Fix

SSB_318917_75 Informational USE CALL INSTEAD OF TRANSFER OR SEND Automated L131 � L131 Pending Fix

SSB_318917_76 Informational USE CALL INSTEAD OF TRANSFER OR SEND Automated L173 � L173 Pending Fix

SSB_318917_77 Informational USE CALL INSTEAD OF TRANSFER OR SEND Automated L248 � L248 Pending Fix

SSB_318917_29 Informational USE SCIENTIFIC NOTATION Automated L70 � L70 Pending Fix

SSB_318917_30 Informational USE SCIENTIFIC NOTATION Automated L72 � L72 Pending Fix

SSB_318917_31 Informational USE SCIENTIFIC NOTATION Automated L79 � L79 Pending Fix

SSB_318917_32 Informational USE SCIENTIFIC NOTATION Automated L84 � L84 Pending Fix

SSB_318917_4 Informational VARIABLES SHOULD BE IMMUTABLE Automated L51 � L51 Pending Fix

SSB_318917_5 Informational VARIABLES SHOULD BE IMMUTABLE Automated L39 � L39 Pending Fix

SSB_318917_6 Informational VARIABLES SHOULD BE IMMUTABLE Automated L40 � L40 Pending Fix

SSB_318917_7 Informational VARIABLES SHOULD BE IMMUTABLE Automated L41 � L41 Pending Fix

SSB_318917_8 Informational VARIABLES SHOULD BE IMMUTABLE Automated L43 � L43 Pending Fix

Page 7 SolidityScan A security assessment report

Bug ID Severity Bug Type Detection Method Line No Status

SSB_318917_9 Informational VARIABLES SHOULD BE IMMUTABLE Automated L52 � L52 Pending Fix

SSB_318917_2 Gas BYTES CONSTANT MORE EFFICIENT THAN STRING
LITERAL

Automated L36 � L36 Pending Fix

SSB_318917_3 Gas BYTES CONSTANT MORE EFFICIENT THAN STRING
LITERAL

Automated L37 � L37 Pending Fix

SSB_318917_84 Gas CHEAPER CONDITIONAL OPERATORS Automated L27 � L27 Pending Fix

SSB_318917_85 Gas CHEAPER CONDITIONAL OPERATORS Automated L151 � L151 Pending Fix

SSB_318917_86 Gas CHEAPER CONDITIONAL OPERATORS Automated L186 � L186 Pending Fix

SSB_318917_87 Gas CHEAPER CONDITIONAL OPERATORS Automated L195 � L195 Pending Fix

SSB_318917_88 Gas CHEAPER CONDITIONAL OPERATORS Automated L206 � L206 Pending Fix

SSB_318917_89 Gas CHEAPER CONDITIONAL OPERATORS Automated L234 � L234 Pending Fix

SSB_318917_90 Gas CHEAPER CONDITIONAL OPERATORS Automated L169 � L169 Pending Fix

SSB_318917_51 Gas CHEAPER INEQUALITIES IN IF�� Automated L160 � L160 Pending Fix

SSB_318917_52 Gas CHEAPER INEQUALITIES IN IF�� Automated L169 � L169 Pending Fix

SSB_318917_53 Gas CHEAPER INEQUALITIES IN REQUIRE�� Automated L7 � L7 Pending Fix

SSB_318917_54 Gas CHEAPER INEQUALITIES IN REQUIRE�� Automated L12 � L12 Pending Fix

SSB_318917_55 Gas CHEAPER INEQUALITIES IN REQUIRE�� Automated L99 � L99 Pending Fix

SSB_318917_56 Gas CHEAPER INEQUALITIES IN REQUIRE�� Automated L118 � L118 Pending Fix

SSB_318917_57 Gas CHEAPER INEQUALITIES IN REQUIRE�� Automated L129 � L129 Pending Fix

Page 8 SolidityScan A security assessment report

Bug ID Severity Bug Type Detection Method Line No Status

SSB_318917_58 Gas CHEAPER INEQUALITIES IN REQUIRE�� Automated L152 � L152 Pending Fix

SSB_318917_59 Gas CHEAPER INEQUALITIES IN REQUIRE�� Automated L216 � L216 Pending Fix

SSB_318917_60 Gas CHEAPER INEQUALITIES IN REQUIRE�� Automated L235 � L235 Pending Fix

SSB_318917_10 Gas DEFINE CONSTRUCTOR AS PAYABLE Automated L68 � L85 Pending Fix

SSB_318917_19 Gas REVERTING FUNCTIONS CAN BE PAYABLE Automated L124 � L126 Pending Fix

SSB_318917_20 Gas REVERTING FUNCTIONS CAN BE PAYABLE Automated L128 � L133 Pending Fix

SSB_318917_63 Gas LONG REQUIRE/REVERT STRINGS Automated L22 � L22 Pending Fix

SSB_318917_64 Gas LONG REQUIRE/REVERT STRINGS Automated L99 � L99 Pending Fix

SSB_318917_65 Gas LONG REQUIRE/REVERT STRINGS Automated L151 � L151 Pending Fix

SSB_318917_66 Gas LONG REQUIRE/REVERT STRINGS Automated L195 � L195 Pending Fix

SSB_318917_67 Gas LONG REQUIRE/REVERT STRINGS Automated L206 � L206 Pending Fix

SSB_318917_68 Gas LONG REQUIRE/REVERT STRINGS Automated L234 � L234 Pending Fix

SSB_318917_15 Gas OPTIMIZING ADDRESS ID MAPPING Automated L46 � L46 Pending Fix

SSB_318917_16 Gas OPTIMIZING ADDRESS ID MAPPING Automated L47 � L47 Pending Fix

SSB_318917_17 Gas OPTIMIZING ADDRESS ID MAPPING Automated L48 � L48 Pending Fix

SSB_318917_18 Gas OPTIMIZING ADDRESS ID MAPPING Automated L49 � L49 Pending Fix

SSB_318917_72 Gas PUBLIC CONSTANTS CAN BE PRIVATE Automated L36 � L36 Pending Fix

SSB_318917_73 Gas PUBLIC CONSTANTS CAN BE PRIVATE Automated L37 � L37 Pending Fix

Page 9 SolidityScan A security assessment report

Bug ID Severity Bug Type Detection Method Line No Status

SSB_318917_74 Gas PUBLIC CONSTANTS CAN BE PRIVATE Automated L38 � L38 Pending Fix

SSB_318917_1 Gas USE OF SAFEMATH LIBRARY Automated L34 � L34 Pending Fix

SSB_318917_35 Gas SMALLER DATA TYPES COST MORE Automated L70 � L70 Pending Fix

SSB_318917_36 Gas SMALLER DATA TYPES COST MORE Automated L72 � L72 Pending Fix

SSB_318917_37 Gas SMALLER DATA TYPES COST MORE Automated L79 � L79 Pending Fix

SSB_318917_38 Gas SMALLER DATA TYPES COST MORE Automated L84 � L84 Pending Fix

SSB_318917_39 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L68 � L85 Pending Fix

SSB_318917_39 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L68 � L85 Pending Fix

SSB_318917_46 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L96 � L102 Pending Fix

SSB_318917_47 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L110 � L114 Pending Fix

SSB_318917_48 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L116 � L122 Pending Fix

SSB_318917_49 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L128 � L133 Pending Fix

SSB_318917_50 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L145 � L182 Pending Fix

SSB_318917_50 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L145 � L182 Pending Fix

SSB_318917_50 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L145 � L182 Pending Fix

SSB_318917_50 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L145 � L182 Pending Fix

SSB_318917_78 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L185 � L190 Pending Fix

SSB_318917_79 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L193 � L203 Pending Fix

Page 10 SolidityScan A security assessment report

Bug ID Severity Bug Type Detection Method Line No Status

SSB_318917_80 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L205 � L230 Pending Fix

SSB_318917_80 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L205 � L230 Pending Fix

SSB_318917_80 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L205 � L230 Pending Fix

SSB_318917_81 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L233 � L258 Pending Fix

SSB_318917_81 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L233 � L258 Pending Fix

SSB_318917_82 Gas STORAGE VARIABLE CACHING IN MEMORY Automated L261 � L272 Pending Fix

SSB_318917_33 Gas USE SELFBALANCE�� INSTEAD OF
ADDRESS�THIS�.BALANCE

Automated L129 � L129 Pending Fix

SSB_318917_70 Gas VARIABLES DECLARED BUT NEVER USED Automated L36 � L36 Pending Fix

Page 11 SolidityScan A security assessment report

4. Vulnerability Details

Bug ID

SSB_318917_41

Bug Type

USE OF FLOATING PRAGMA

Severity

Low

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L2 � L2

File Location

contract.sol

Affected Code

contract.sol L2 � L2

1
// SPDX-License-Identifier: MIT

2
pragma solidity ^0.8.24;

3

4
library SafeMath {

Description

Solidity source files indicate the versions of the compiler they can be compiled with using a pragma directive at the t
op of the solidity file. This can either be a floating pragma or a specific compiler version.
The contract was found to be using a floating pragma which is not considered safe as it can be compiled with all the
versions described.
The following affected files were found to be using floating pragma:
['contract.sol'] - ^0.8.24

Remediation

It is recommended to use a fixed pragma version, as future compiler versions may handle certain language constructi
ons in a way the developer did not foresee.
Using a floating pragma may introduce several vulnerabilities if compiled with an older version.
The developers should always use the exact Solidity compiler version when designing their contracts as it may break
the changes in the future.
Instead of ^0.8.24 use pragma solidity v0.8.24 , which is a stable and recommended version right now.

Page 12 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_42

Bug Type

LONG NUMBER LITERALS

Severity

Low

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L70 � L70

File Location

contract.sol

Affected Code

contract.sol L70 � L70

69
 owner = payable(msg.sender); // Set the owner to the address that deploys the contract

70
 totalSupply = 1000000000 * 10 ** uint256(decimals);

71
 maxSupply = totalSupply;

72
 maxWalletBalance = 20000 * 10 ** uint256(decimals);

Description

Solidity supports multiple rational and integer literals, including decimal fractions and scientific notations. The use of
very large numbers with too many digits was detected in the code that could have been optimized using a different n
otation also supported by Solidity.
The value 1000000000 was detected on line 70.

Remediation

Scientific notation in the form of 2e10 is also supported, where the mantissa can be fractional but the exponent has
to be an integer. The literal MeE is equivalent to M * 10**E . Examples include 2e10 , 2e10 , 2e-10 , 2.5e1 , as
suggested in official solidity documentation https://docs.soliditylang.org/en/latest/types.html#ratio
nal-and-integer-literals

Page 13 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_43

Bug Type

LONG NUMBER LITERALS

Severity

Low

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L74 � L74

File Location

contract.sol

Affected Code

contract.sol L74 � L74

73
 lockTimeBlocks = 105120000; // Equivalent to approximately 2 years with 15 seconds per block

74
 rate = 100000; // Initial rate: 100000 BYF per 1 ETH

75

76
 balances[msg.sender] = totalSupply;

Description

Solidity supports multiple rational and integer literals, including decimal fractions and scientific notations. The use of
very large numbers with too many digits was detected in the code that could have been optimized using a different n
otation also supported by Solidity.
The value 100000 was detected on line 74.

Remediation

Scientific notation in the form of 2e10 is also supported, where the mantissa can be fractional but the exponent has
to be an integer. The literal MeE is equivalent to M * 10**E . Examples include 2e10 , 2e10 , 2e-10 , 2.5e1 , as
suggested in official solidity documentation https://docs.soliditylang.org/en/latest/types.html#ratio
nal-and-integer-literals

Page 14 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_44

Bug Type

LONG NUMBER LITERALS

Severity

Low

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L79 � L79

File Location

contract.sol

Affected Code

contract.sol L79 � L79

78
 // Lock a portion of the owner's wallet balance for 2 years

79
 uint256 lockedBalance = 100000000 * 10 ** uint256(decimals);

80
 _lockTokens(msg.sender, lockedBalance, lockTimeBlocks);

81

Description

Solidity supports multiple rational and integer literals, including decimal fractions and scientific notations. The use of
very large numbers with too many digits was detected in the code that could have been optimized using a different n
otation also supported by Solidity.
The value 100000000 was detected on line 79.

Remediation

Scientific notation in the form of 2e10 is also supported, where the mantissa can be fractional but the exponent has
to be an integer. The literal MeE is equivalent to M * 10**E . Examples include 2e10 , 2e10 , 2e-10 , 2.5e1 , as
suggested in official solidity documentation https://docs.soliditylang.org/en/latest/types.html#ratio
nal-and-integer-literals

Page 15 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_45

Bug Type

LONG NUMBER LITERALS

Severity

Low

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L84 � L84

File Location

contract.sol

Affected Code

contract.sol L84 � L84

83
 tradingAddress = address(this);

84
 balances[tradingAddress] = 100000000 * 10 ** uint256(decimals);

85
 }

86

Description

Solidity supports multiple rational and integer literals, including decimal fractions and scientific notations. The use of
very large numbers with too many digits was detected in the code that could have been optimized using a different n
otation also supported by Solidity.
The value 100000000 was detected on line 84.

Remediation

Scientific notation in the form of 2e10 is also supported, where the mantissa can be fractional but the exponent has
to be an integer. The literal MeE is equivalent to M * 10**E . Examples include 2e10 , 2e10 , 2e-10 , 2.5e1 , as
suggested in official solidity documentation https://docs.soliditylang.org/en/latest/types.html#ratio
nal-and-integer-literals

Page 16 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_34

Bug Type

MISSING EVENTS

Severity

Low

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L140 � L142

File Location

contract.sol

Affected Code

contract.sol L140 � L142

139
 // Fallback function to receive Ether

140
 receive() external payable {

141
 emit Received(msg.sender, msg.value);

142
 }

143

144
 // Internal transfer function

Description

Events are inheritable members of contracts. When you call them, they cause the arguments to be stored in the trans
action’s log — a special data structure in the blockchain.
These logs are associated with the address of the contract which can then be used by developers and auditors to ke
ep track of the transactions.
The contract BYFCOIN was found to be missing these events on the function which would make it difficult or impossi
ble to track these transactions off-chain.

Remediation

Consider emitting events for the functions mentioned above. It is also recommended to have the addresses indexed.

Page 17 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_61

Bug Type

BLOCK VALUES AS A PROXY FOR TIME

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L136 � L136

File Location

contract.sol

Affected Code

contract.sol L136 � L136

135
 function isUnlocked(address account) external view returns (bool) {

136
 return unlockTime[account] <= block.timestamp;

137
 }

138

Description

Contracts often need access to time values to perform certain types of functionality. Values such as block.timest
amp and block.number can be used to determine the current time or the time delta. However, they are not recom
mended for most use cases.

For block.number , as Ethereum block times are generally around 14 seconds, the delta between blocks can be pre
dicted. The block times, on the other hand, do not remain constant and are subject to change for a number of reason
s, e.g., fork reorganizations and the difficulty bomb.

Due to variable block times, block.number should not be relied on for precise calculations of time.

Remediation

It is recommended to use trusted external time sources, block numbers instead of timestamps, and/or utilizing multip
le time sources to increase reliability. These practices can help mitigate risks of timestamp manipulation and inaccura
te timing, increasing the reliability and security of the smart contract.

Page 18 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_62

Bug Type

BLOCK VALUES AS A PROXY FOR TIME

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L198 � L198

File Location

contract.sol

Affected Code

contract.sol L198 � L198

197
 // Calculate the unlock timestamp based on the current block timestamp and the lock duration

198
 uint256 unlockTimestamp = block.timestamp + lockDuration;

199

200
 unlockTime[account] = unlockTimestamp;

Description

Contracts often need access to time values to perform certain types of functionality. Values such as block.timest
amp and block.number can be used to determine the current time or the time delta. However, they are not recom
mended for most use cases.

For block.number , as Ethereum block times are generally around 14 seconds, the delta between blocks can be pre
dicted. The block times, on the other hand, do not remain constant and are subject to change for a number of reason
s, e.g., fork reorganizations and the difficulty bomb.

Due to variable block times, block.number should not be relied on for precise calculations of time.

Remediation

It is recommended to use trusted external time sources, block numbers instead of timestamps, and/or utilizing multip
le time sources to increase reliability. These practices can help mitigate risks of timestamp manipulation and inaccura
te timing, increasing the reliability and security of the smart contract.

Page 19 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_83

Bug Type

IF�STATEMENT REFACTORING

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L262 � L268

File Location

contract.sol

Affected Code

contract.sol L262 � L268

261
 function _updateRate(bool isBuy) private {

262
 if (isBuy) {

263
 // Decrease rate by 0.4% after each buy

264
 rate = rate.mul(996).div(1000);

265
 } else {

266
 // Increase rate by 0.1% after each sell

267
 rate = rate.mul(1001).div(1000);

268
 }

269

270
 // Emit the RateUpdated event with the new rate

Description

In Solidity, we aim to write clear, efficient code that is both easy to understand and maintain. If statements can be co
nverted to ternary operators. While using ternary operators instead of if/else statements can sometimes lead to more
concise code, it's crucial to understand the trade-offs involved.

Remediation

To optimize your Solidity code, consider converting simple if/else statements to ternary operators, particularly for sin
gle-line arithmetic or logical operations. Utilizing ternary operators can improve code conciseness and readability. Ho
wever, be mindful of code complexity and readability concerns. If the if/else statement is not single-line or involves m
ultiple operations, retaining it for clarity is advisable.

Page 20 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_21

Bug Type

MISSING UNDERSCORE IN NAMING VARIABLES

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L46 � L46

File Location

contract.sol

Affected Code

contract.sol L46 � L46

45

46
 mapping(address => uint256) private balances;

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

Description

Solidity style guide suggests using underscores as the prefix for non-external functions and state variables (private o
r internal) but the contract was not found to be following the same.

Remediation

It is recommended to use an underscore for internal and private variables and functions to be in accordance with the
Solidity style guide which will also make the code much easier to read.

Page 21 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_22

Bug Type

MISSING UNDERSCORE IN NAMING VARIABLES

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L47 � L47

File Location

contract.sol

Affected Code

contract.sol L47 � L47

46
 mapping(address => uint256) private balances;

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

Description

Solidity style guide suggests using underscores as the prefix for non-external functions and state variables (private o
r internal) but the contract was not found to be following the same.

Remediation

It is recommended to use an underscore for internal and private variables and functions to be in accordance with the
Solidity style guide which will also make the code much easier to read.

Page 22 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_23

Bug Type

MISSING UNDERSCORE IN NAMING VARIABLES

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L48 � L48

File Location

contract.sol

Affected Code

contract.sol L48 � L48

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

50

Description

Solidity style guide suggests using underscores as the prefix for non-external functions and state variables (private o
r internal) but the contract was not found to be following the same.

Remediation

It is recommended to use an underscore for internal and private variables and functions to be in accordance with the
Solidity style guide which will also make the code much easier to read.

Page 23 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_24

Bug Type

MISSING UNDERSCORE IN NAMING VARIABLES

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L49 � L49

File Location

contract.sol

Affected Code

contract.sol L49 � L49

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

50

51
 address payable public owner;

Description

Solidity style guide suggests using underscores as the prefix for non-external functions and state variables (private o
r internal) but the contract was not found to be following the same.

Remediation

It is recommended to use an underscore for internal and private variables and functions to be in accordance with the
Solidity style guide which will also make the code much easier to read.

Page 24 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_25

Bug Type

MISSING UNDERSCORE IN NAMING VARIABLES

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L5 � L9

File Location

contract.sol

Affected Code

contract.sol L5 � L9

4
library SafeMath {

5
 function add(uint256 a, uint256 b) internal pure returns (uint256) {

6
 uint256 c = a + b;

7
 require(c >= a, 'SafeMath: addition overflow');

8
 return c;

9
 }

10

11
 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

Description

Solidity style guide suggests using underscores as the prefix for non-external functions and state variables (private o
r internal) but the contract was not found to be following the same.

Remediation

It is recommended to use an underscore for internal and private variables and functions to be in accordance with the
Solidity style guide which will also make the code much easier to read.

Page 25 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_26

Bug Type

MISSING UNDERSCORE IN NAMING VARIABLES

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L11 � L15

File Location

contract.sol

Affected Code

contract.sol L11 � L15

10

11
 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

12
 require(b <= a, 'SafeMath: subtraction overflow');

13
 uint256 c = a - b;

14
 return c;

15
 }

16

17
 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

Description

Solidity style guide suggests using underscores as the prefix for non-external functions and state variables (private o
r internal) but the contract was not found to be following the same.

Remediation

It is recommended to use an underscore for internal and private variables and functions to be in accordance with the
Solidity style guide which will also make the code much easier to read.

Page 26 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_27

Bug Type

MISSING UNDERSCORE IN NAMING VARIABLES

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L17 � L24

File Location

contract.sol

Affected Code

contract.sol L17 � L24

16

17
 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

18
 if (a == 0) {

19
 return 0;

20
 }

21
 uint256 c = a * b;

22
 require(c / a == b, 'SafeMath: multiplication overflow');

23
 return c;

24
 }

25

26
 function div(uint256 a, uint256 b) internal pure returns (uint256) {

Description

Solidity style guide suggests using underscores as the prefix for non-external functions and state variables (private o
r internal) but the contract was not found to be following the same.

Remediation

It is recommended to use an underscore for internal and private variables and functions to be in accordance with the
Solidity style guide which will also make the code much easier to read.

Page 27 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_28

Bug Type

MISSING UNDERSCORE IN NAMING VARIABLES

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L26 � L30

File Location

contract.sol

Affected Code

contract.sol L26 � L30

25

26
 function div(uint256 a, uint256 b) internal pure returns (uint256) {

27
 require(b > 0, 'SafeMath: division by zero');

28
 uint256 c = a / b;

29
 return c;

30
 }

31
}

32

Description

Solidity style guide suggests using underscores as the prefix for non-external functions and state variables (private o
r internal) but the contract was not found to be following the same.

Remediation

It is recommended to use an underscore for internal and private variables and functions to be in accordance with the
Solidity style guide which will also make the code much easier to read.

Page 28 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_11

Bug Type

NAME MAPPING PARAMETERS

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L46 � L46

File Location

contract.sol

Affected Code

contract.sol L46 � L46

45

46
 mapping(address => uint256) private balances;

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

Description

After Solidity 0.8.18, a feature was introduced to name mapping parameters. This helps in defining a purpose for each
mapping and makes the code more descriptive.

Remediation

It is recommended to name the mapping parameters if Solidity 0.8.18 and above is used.

Page 29 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_12

Bug Type

NAME MAPPING PARAMETERS

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L47 � L47

File Location

contract.sol

Affected Code

contract.sol L47 � L47

46
 mapping(address => uint256) private balances;

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

Description

After Solidity 0.8.18, a feature was introduced to name mapping parameters. This helps in defining a purpose for each
mapping and makes the code more descriptive.

Remediation

It is recommended to name the mapping parameters if Solidity 0.8.18 and above is used.

Page 30 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_13

Bug Type

NAME MAPPING PARAMETERS

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L48 � L48

File Location

contract.sol

Affected Code

contract.sol L48 � L48

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

50

Description

After Solidity 0.8.18, a feature was introduced to name mapping parameters. This helps in defining a purpose for each
mapping and makes the code more descriptive.

Remediation

It is recommended to name the mapping parameters if Solidity 0.8.18 and above is used.

Page 31 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_14

Bug Type

NAME MAPPING PARAMETERS

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L49 � L49

File Location

contract.sol

Affected Code

contract.sol L49 � L49

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

50

51
 address payable public owner;

Description

After Solidity 0.8.18, a feature was introduced to name mapping parameters. This helps in defining a purpose for each
mapping and makes the code more descriptive.

Remediation

It is recommended to name the mapping parameters if Solidity 0.8.18 and above is used.

Page 32 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_75

Bug Type

USE CALL INSTEAD OF TRANSFER OR SEND

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L131 � L131

File Location

contract.sol

Affected Code

contract.sol L131 � L131

130

131
 owner.transfer(amount); // Transfer the specified amount to the owner

132
 emit Withdraw(owner, amount); // Emit withdrawal event

133
 }

Description

The contract was found to be using transfer or send function call. This is unsafe as transfer has hard coded
gas budget and can fail if the user is a smart contract.

Remediation

It is recommended to use call which does not have any hardcoded gas.

Page 33 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_76

Bug Type

USE CALL INSTEAD OF TRANSFER OR SEND

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L173 � L173

File Location

contract.sol

Affected Code

contract.sol L173 � L173

172
 // Transfer ETH tax to owner's wallet

173
 owner.transfer(ethTaxAmount);

174
 emit Transfer(from, owner, taxAmount);

175
 emit TaxDeducted(from, owner, ethTaxAmount); // Emit tax deduction event

Description

The contract was found to be using transfer or send function call. This is unsafe as transfer has hard coded
gas budget and can fail if the user is a smart contract.

Remediation

It is recommended to use call which does not have any hardcoded gas.

Page 34 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_77

Bug Type

USE CALL INSTEAD OF TRANSFER OR SEND

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L248 � L248

File Location

contract.sol

Affected Code

contract.sol L248 � L248

247
 // Transfer ETH to the seller

248
 payable(msg.sender).transfer(ethAmount);

249

250
 // Emit the Sold event

Description

The contract was found to be using transfer or send function call. This is unsafe as transfer has hard coded
gas budget and can fail if the user is a smart contract.

Remediation

It is recommended to use call which does not have any hardcoded gas.

Page 35 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_29

Bug Type

USE SCIENTIFIC NOTATION

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L70 � L70

File Location

contract.sol

Affected Code

contract.sol L70 � L70

69
 owner = payable(msg.sender); // Set the owner to the address that deploys the contract

70
 totalSupply = 1000000000 * 10 ** uint256(decimals);

71
 maxSupply = totalSupply;

72
 maxWalletBalance = 20000 * 10 ** uint256(decimals);

Description

Although the Solidity compiler can optimize exponentiation, it is recommended to prioritize idioms not reliant on com
piler optimization. Utilizing scientific notation enhances code clarity, making it more self-explanatory and aligning wit
h best practices in Solidity development.

Remediation

Enhance code readability by replacing exponentiation with scientific notation where applicable. This practice not onl
y aligns with best practices but also reduces the reliance on compiler optimization, contributing to more robust and h
uman-friendly Solidity code.

Page 36 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_30

Bug Type

USE SCIENTIFIC NOTATION

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L72 � L72

File Location

contract.sol

Affected Code

contract.sol L72 � L72

71
 maxSupply = totalSupply;

72
 maxWalletBalance = 20000 * 10 ** uint256(decimals);

73
 lockTimeBlocks = 105120000; // Equivalent to approximately 2 years with 15 seconds per block

74
 rate = 100000; // Initial rate: 100000 BYF per 1 ETH

Description

Although the Solidity compiler can optimize exponentiation, it is recommended to prioritize idioms not reliant on com
piler optimization. Utilizing scientific notation enhances code clarity, making it more self-explanatory and aligning wit
h best practices in Solidity development.

Remediation

Enhance code readability by replacing exponentiation with scientific notation where applicable. This practice not onl
y aligns with best practices but also reduces the reliance on compiler optimization, contributing to more robust and h
uman-friendly Solidity code.

Page 37 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_31

Bug Type

USE SCIENTIFIC NOTATION

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L79 � L79

File Location

contract.sol

Affected Code

contract.sol L79 � L79

78
 // Lock a portion of the owner's wallet balance for 2 years

79
 uint256 lockedBalance = 100000000 * 10 ** uint256(decimals);

80
 _lockTokens(msg.sender, lockedBalance, lockTimeBlocks);

81

Description

Although the Solidity compiler can optimize exponentiation, it is recommended to prioritize idioms not reliant on com
piler optimization. Utilizing scientific notation enhances code clarity, making it more self-explanatory and aligning wit
h best practices in Solidity development.

Remediation

Enhance code readability by replacing exponentiation with scientific notation where applicable. This practice not onl
y aligns with best practices but also reduces the reliance on compiler optimization, contributing to more robust and h
uman-friendly Solidity code.

Page 38 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_32

Bug Type

USE SCIENTIFIC NOTATION

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L84 � L84

File Location

contract.sol

Affected Code

contract.sol L84 � L84

83
 tradingAddress = address(this);

84
 balances[tradingAddress] = 100000000 * 10 ** uint256(decimals);

85
 }

86

Description

Although the Solidity compiler can optimize exponentiation, it is recommended to prioritize idioms not reliant on com
piler optimization. Utilizing scientific notation enhances code clarity, making it more self-explanatory and aligning wit
h best practices in Solidity development.

Remediation

Enhance code readability by replacing exponentiation with scientific notation where applicable. This practice not onl
y aligns with best practices but also reduces the reliance on compiler optimization, contributing to more robust and h
uman-friendly Solidity code.

Page 39 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_4

Bug Type

VARIABLES SHOULD BE IMMUTABLE

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L51 � L51

File Location

contract.sol

Affected Code

contract.sol L51 � L51

50

51
 address payable public owner;

52
 address public tradingAddress;

53

Description

Constants and Immutables should be used in their appropriate contexts.
constant should only be used for literal values written into the code. immutable variables should be used for ex

pressions, or values calculated in, or passed into the constructor.

Remediation

It is recommended to use immutable instead of constant .

Page 40 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_5

Bug Type

VARIABLES SHOULD BE IMMUTABLE

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L39 � L39

File Location

contract.sol

Affected Code

contract.sol L39 � L39

38
 uint8 public constant decimals = 18;

39
 uint256 public totalSupply;

40
 uint256 public maxSupply;

41
 uint256 public maxWalletBalance;

Description

Constants and Immutables should be used in their appropriate contexts.
constant should only be used for literal values written into the code. immutable variables should be used for ex

pressions, or values calculated in, or passed into the constructor.

Remediation

It is recommended to use immutable instead of constant .

Page 41 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_6

Bug Type

VARIABLES SHOULD BE IMMUTABLE

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L40 � L40

File Location

contract.sol

Affected Code

contract.sol L40 � L40

39
 uint256 public totalSupply;

40
 uint256 public maxSupply;

41
 uint256 public maxWalletBalance;

42
 uint256 public taxRate = 3; // 3% tax rate represented as a decimal fraction

Description

Constants and Immutables should be used in their appropriate contexts.
constant should only be used for literal values written into the code. immutable variables should be used for ex

pressions, or values calculated in, or passed into the constructor.

Remediation

It is recommended to use immutable instead of constant .

Page 42 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_7

Bug Type

VARIABLES SHOULD BE IMMUTABLE

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L41 � L41

File Location

contract.sol

Affected Code

contract.sol L41 � L41

40
 uint256 public maxSupply;

41
 uint256 public maxWalletBalance;

42
 uint256 public taxRate = 3; // 3% tax rate represented as a decimal fraction

43
 uint256 public lockTimeBlocks; // Lock duration in blocks

Description

Constants and Immutables should be used in their appropriate contexts.
constant should only be used for literal values written into the code. immutable variables should be used for ex

pressions, or values calculated in, or passed into the constructor.

Remediation

It is recommended to use immutable instead of constant .

Page 43 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_8

Bug Type

VARIABLES SHOULD BE IMMUTABLE

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L43 � L43

File Location

contract.sol

Affected Code

contract.sol L43 � L43

42
 uint256 public taxRate = 3; // 3% tax rate represented as a decimal fraction

43
 uint256 public lockTimeBlocks; // Lock duration in blocks

44
 uint256 public rate; // Rate of swap (BYF per ETH)

45

Description

Constants and Immutables should be used in their appropriate contexts.
constant should only be used for literal values written into the code. immutable variables should be used for ex

pressions, or values calculated in, or passed into the constructor.

Remediation

It is recommended to use immutable instead of constant .

Page 44 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_9

Bug Type

VARIABLES SHOULD BE IMMUTABLE

Severity

Informational

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L52 � L52

File Location

contract.sol

Affected Code

contract.sol L52 � L52

51
 address payable public owner;

52
 address public tradingAddress;

53

54
 event Transfer(address indexed from, address indexed to, uint256 value);

Description

Constants and Immutables should be used in their appropriate contexts.
constant should only be used for literal values written into the code. immutable variables should be used for ex

pressions, or values calculated in, or passed into the constructor.

Remediation

It is recommended to use immutable instead of constant .

Page 45 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_2

Bug Type

BYTES CONSTANT MORE EFFICIENT THAN STRING LITERAL

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L36 � L36

File Location

contract.sol

Affected Code

contract.sol L36 � L36

35

36
 string public constant name = "BYFCOIN";

37
 string public constant symbol = "BYF";

38
 uint8 public constant decimals = 18;

Description

The contract was found to be using name string constant. This can be optimized by using bytes32 constant to s
ave gas.

Remediation

Unless explicitly required, if the string is lesser than 32 bytes, it is recommended to use bytes32 constant instea
d of a string constant as it’ll save some gas.

Page 46 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_3

Bug Type

BYTES CONSTANT MORE EFFICIENT THAN STRING LITERAL

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L37 � L37

File Location

contract.sol

Affected Code

contract.sol L37 � L37

36
 string public constant name = "BYFCOIN";

37
 string public constant symbol = "BYF";

38
 uint8 public constant decimals = 18;

39
 uint256 public totalSupply;

Description

The contract was found to be using symbol string constant. This can be optimized by using bytes32 constant to
save gas.

Remediation

Unless explicitly required, if the string is lesser than 32 bytes, it is recommended to use bytes32 constant instea
d of a string constant as it’ll save some gas.

Page 47 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_84

Bug Type

CHEAPER CONDITIONAL OPERATORS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L27 � L27

File Location

contract.sol

Affected Code

contract.sol L27 � L27

26
 function div(uint256 a, uint256 b) internal pure returns (uint256) {

27
 require(b > 0, 'SafeMath: division by zero');

28
 uint256 c = a / b;

29
 return c;

Description

During compilation, x != 0 is cheaper than x > 0 for unsigned integers in solidity inside conditional statements.

Remediation

Consider using x != 0 in place of x > 0 in uint wherever possible.

Page 48 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_85

Bug Type

CHEAPER CONDITIONAL OPERATORS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L151 � L151

File Location

contract.sol

Affected Code

contract.sol L151 � L151

150
 require(to != address(0), "Invalid address");

151
 require(value > 0, "Transfer value must be greater than zero");

152
 require(balances[from] >= value, "Insufficient balance");

153

Description

During compilation, x != 0 is cheaper than x > 0 for unsigned integers in solidity inside conditional statements.

Remediation

Consider using x != 0 in place of x > 0 in uint wherever possible.

Page 49 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_86

Bug Type

CHEAPER CONDITIONAL OPERATORS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L186 � L186

File Location

contract.sol

Affected Code

contract.sol L186 � L186

185
 function _calculateEthAmount(uint256 byfAmount) private view returns (uint256) {

186
 require(rate > 0, "Rate must be greater than zero");

187
 // Calculate ETH amount based on current rate

188
 uint256 ethAmount = byfAmount.div(rate);

Description

During compilation, x != 0 is cheaper than x > 0 for unsigned integers in solidity inside conditional statements.

Remediation

Consider using x != 0 in place of x > 0 in uint wherever possible.

Page 50 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_87

Bug Type

CHEAPER CONDITIONAL OPERATORS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L195 � L195

File Location

contract.sol

Affected Code

contract.sol L195 � L195

194
 require(account != address(0), "Invalid address");

195
 require(lockDuration > 0, "Lock duration must be greater than zero");

196

197
 // Calculate the unlock timestamp based on the current block timestamp and the lock duration

Description

During compilation, x != 0 is cheaper than x > 0 for unsigned integers in solidity inside conditional statements.

Remediation

Consider using x != 0 in place of x > 0 in uint wherever possible.

Page 51 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_88

Bug Type

CHEAPER CONDITIONAL OPERATORS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L206 � L206

File Location

contract.sol

Affected Code

contract.sol L206 � L206

205
 function buyBYF(uint256 ethAmountInWei) external payable {

206
 require(ethAmountInWei > 0, "ETH amount must be greater than zero");

207

208
 // Implement mutex lock at the beginning of the function

Description

During compilation, x != 0 is cheaper than x > 0 for unsigned integers in solidity inside conditional statements.

Remediation

Consider using x != 0 in place of x > 0 in uint wherever possible.

Page 52 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_89

Bug Type

CHEAPER CONDITIONAL OPERATORS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L234 � L234

File Location

contract.sol

Affected Code

contract.sol L234 � L234

233
 function sellBYF(uint256 byfAmount) external {

234
 require(byfAmount > 0, "BYF amount must be greater than zero");

235
 require(balances[msg.sender] >= byfAmount, "Insufficient BYF balance");

236

Description

During compilation, x != 0 is cheaper than x > 0 for unsigned integers in solidity inside conditional statements.

Remediation

Consider using x != 0 in place of x > 0 in uint wherever possible.

Page 53 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_90

Bug Type

CHEAPER CONDITIONAL OPERATORS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L169 � L169

File Location

contract.sol

Affected Code

contract.sol L169 � L169

168

169
 if (taxAmount > 0) {

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

Description

During compilation, x != 0 is cheaper than x > 0 for unsigned integers in solidity inside conditional statements.

Remediation

Consider using x != 0 in place of x > 0 in uint wherever possible.

Page 54 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_51

Bug Type

CHEAPER INEQUALITIES IN IF��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L160 � L160

File Location

contract.sol

Affected Code

contract.sol L160 � L160

159

160
 if (from != owner && to != owner && balances[to].add(transferAmount) > maxWalletBalance) {

161
 uint256 excessTokens = balances[to].add(transferAmount).sub(maxWalletBalance);

162
 _lockTokens(to, excessTokens, lockTimeBlocks);

Description

The contract was found to be doing comparisons using inequalities inside the if statement.
When inside the if statements, non-strict inequalities (>=, <=) are usually cheaper than the strict equalities
(>, <).

Remediation

It is recommended to go through the code logic, and, if possible, modify the strict inequalities with the non-strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 55 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_52

Bug Type

CHEAPER INEQUALITIES IN IF��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L169 � L169

File Location

contract.sol

Affected Code

contract.sol L169 � L169

168

169
 if (taxAmount > 0) {

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

Description

The contract was found to be doing comparisons using inequalities inside the if statement.
When inside the if statements, non-strict inequalities (>=, <=) are usually cheaper than the strict equalities
(>, <).

Remediation

It is recommended to go through the code logic, and, if possible, modify the strict inequalities with the non-strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 56 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_53

Bug Type

CHEAPER INEQUALITIES IN REQUIRE��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L7 � L7

File Location

contract.sol

Affected Code

contract.sol L7 � L7

6
 uint256 c = a + b;

7
 require(c >= a, 'SafeMath: addition overflow');

8
 return c;

9
 }

Description

The contract was found to be performing comparisons using inequalities inside the require statement. When insid
e the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Remediation

It is recommended to go through the code logic, and, if possible, modify the non-strict inequalities with the strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 57 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_54

Bug Type

CHEAPER INEQUALITIES IN REQUIRE��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L12 � L12

File Location

contract.sol

Affected Code

contract.sol L12 � L12

11
 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

12
 require(b <= a, 'SafeMath: subtraction overflow');

13
 uint256 c = a - b;

14
 return c;

Description

The contract was found to be performing comparisons using inequalities inside the require statement. When insid
e the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Remediation

It is recommended to go through the code logic, and, if possible, modify the non-strict inequalities with the strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 58 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_55

Bug Type

CHEAPER INEQUALITIES IN REQUIRE��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L99 � L99

File Location

contract.sol

Affected Code

contract.sol L99 � L99

98
 uint256 currentAllowance = allowances[from][msg.sender];

99
 require(currentAllowance >= value, "Transfer amount exceeds allowance");

100
 allowances[from][msg.sender] = currentAllowance.sub(value);

101
 return true;

Description

The contract was found to be performing comparisons using inequalities inside the require statement. When insid
e the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Remediation

It is recommended to go through the code logic, and, if possible, modify the non-strict inequalities with the strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 59 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_56

Bug Type

CHEAPER INEQUALITIES IN REQUIRE��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L118 � L118

File Location

contract.sol

Affected Code

contract.sol L118 � L118

117
 uint256 currentAllowance = allowances[msg.sender][spender];

118
 require(currentAllowance >= subtractedValue, "Decreased allowance below zero");

119
 allowances[msg.sender][spender] = currentAllowance.sub(subtractedValue);

120
 emit Approval(msg.sender, spender, allowances[msg.sender][spender]);

Description

The contract was found to be performing comparisons using inequalities inside the require statement. When insid
e the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Remediation

It is recommended to go through the code logic, and, if possible, modify the non-strict inequalities with the strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 60 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_57

Bug Type

CHEAPER INEQUALITIES IN REQUIRE��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L129 � L129

File Location

contract.sol

Affected Code

contract.sol L129 � L129

128
 function withdrawEther(uint256 amount) external onlyOwner {

129
 require(amount <= address(this).balance, "Insufficient contract balance");

130

131
 owner.transfer(amount); // Transfer the specified amount to the owner

Description

The contract was found to be performing comparisons using inequalities inside the require statement. When insid
e the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Remediation

It is recommended to go through the code logic, and, if possible, modify the non-strict inequalities with the strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 61 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_58

Bug Type

CHEAPER INEQUALITIES IN REQUIRE��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L152 � L152

File Location

contract.sol

Affected Code

contract.sol L152 � L152

151
 require(value > 0, "Transfer value must be greater than zero");

152
 require(balances[from] >= value, "Insufficient balance");

153

154
 // Calculate the tax amount based on the tax rate

Description

The contract was found to be performing comparisons using inequalities inside the require statement. When insid
e the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Remediation

It is recommended to go through the code logic, and, if possible, modify the non-strict inequalities with the strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 62 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_59

Bug Type

CHEAPER INEQUALITIES IN REQUIRE��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L216 � L216

File Location

contract.sol

Affected Code

contract.sol L216 � L216

215
 // Ensure that the contract has enough BYF tokens to fulfill the purchase

216
 require(balances[tradingAddress] >= byfAmount, "Insufficient BYF balance");

217

218
 // Transfer BYF tokens to the buyer

Description

The contract was found to be performing comparisons using inequalities inside the require statement. When insid
e the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Remediation

It is recommended to go through the code logic, and, if possible, modify the non-strict inequalities with the strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 63 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_60

Bug Type

CHEAPER INEQUALITIES IN REQUIRE��

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L235 � L235

File Location

contract.sol

Affected Code

contract.sol L235 � L235

234
 require(byfAmount > 0, "BYF amount must be greater than zero");

235
 require(balances[msg.sender] >= byfAmount, "Insufficient BYF balance");

236

237
 // Implement mutex lock at the beginning of the function

Description

The contract was found to be performing comparisons using inequalities inside the require statement. When insid
e the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Remediation

It is recommended to go through the code logic, and, if possible, modify the non-strict inequalities with the strict one
s to save ~3 gas as long as the logic of the code is not affected.

Page 64 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_10

Bug Type

DEFINE CONSTRUCTOR AS PAYABLE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L68 � L85

File Location

contract.sol

Affected Code

contract.sol L68 � L85

67

68
 constructor() {

69
 owner = payable(msg.sender); // Set the owner to the address that deploys the contract

70
 totalSupply = 1000000000 * 10 ** uint256(decimals);

71
 maxSupply = totalSupply;

72
 maxWalletBalance = 20000 * 10 ** uint256(decimals);

73
 lockTimeBlocks = 105120000; // Equivalent to approximately 2 years with 15 seconds per block

74
 rate = 100000; // Initial rate: 100000 BYF per 1 ETH

75

76
 balances[msg.sender] = totalSupply;

77

78
 // Lock a portion of the owner's wallet balance for 2 years

79
 uint256 lockedBalance = 100000000 * 10 ** uint256(decimals);

80
 _lockTokens(msg.sender, lockedBalance, lockTimeBlocks);

81

82
 // Allocate 100,000,000 BYF for trading

83
 tradingAddress = address(this);

84
 balances[tradingAddress] = 100000000 * 10 ** uint256(decimals);

85
 }

86

87
 function balanceOf(address account) external view returns (uint256) {

88
 return balances[account];

Page 65 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Description

Developers can save around 10 opcodes and some gas if the constructors are defined as payable.
However, it should be noted that it comes with risks because payable constructors can accept ETH during deployme
nt.

Remediation

It is suggested to mark the constructors as payable to save some gas. Make sure it does not lead to any adverse effe
cts in case an upgrade pattern is involved.

Page 66 SolidityScan A security assessment report

Bug ID

SSB_318917_19

Bug Type

REVERTING FUNCTIONS CAN BE PAYABLE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L124 � L126

File Location

contract.sol

Affected Code

contract.sol L124 � L126

123

124
 function withdrawTokens(uint256 amount) external onlyOwner {

125
 _transfer(tradingAddress, msg.sender, amount);

126
 }

127

128
 function withdrawEther(uint256 amount) external onlyOwner {

Description

If a function modifier such as onlyOwner is used, the function will revert if a normal user tries to pay the function.
Marking the function as payable will lower the gas cost for legitimate callers because the compiler will not include ch
ecks for whether a payment was provided.

Remediation

In the above code, the onlyOwner modifier ensures that only the contract owner can execute the withdrawToken
s . If a normal user attempts to call this function, the transaction will automatically revert. By marking the withdraw
Tokens as payable, we can optimize gas costs for legitimate callers since the compiler will skip the checks for paym
ent.

Page 67 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_20

Bug Type

REVERTING FUNCTIONS CAN BE PAYABLE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L128 � L133

File Location

contract.sol

Affected Code

contract.sol L128 � L133

127

128
 function withdrawEther(uint256 amount) external onlyOwner {

129
 require(amount <= address(this).balance, "Insufficient contract balance");

130

131
 owner.transfer(amount); // Transfer the specified amount to the owner

132
 emit Withdraw(owner, amount); // Emit withdrawal event

133
 }

134

135
 function isUnlocked(address account) external view returns (bool) {

Description

If a function modifier such as onlyOwner is used, the function will revert if a normal user tries to pay the function.
Marking the function as payable will lower the gas cost for legitimate callers because the compiler will not include ch
ecks for whether a payment was provided.

Remediation

In the above code, the onlyOwner modifier ensures that only the contract owner can execute the withdrawEthe
r . If a normal user attempts to call this function, the transaction will automatically revert. By marking the withdraw
Ether as payable, we can optimize gas costs for legitimate callers since the compiler will skip the checks for payme
nt.

Page 68 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_63

Bug Type

LONG REQUIRE/REVERT STRINGS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L22 � L22

File Location

contract.sol

Affected Code

contract.sol L22 � L22

21
 uint256 c = a * b;

22
 require(c / a == b, 'SafeMath: multiplication overflow');

23
 return c;

24
 }

Description

The require() and revert() functions take an input string to show errors if the validation fails.
This strings inside these functions that are longer than 32 bytes require at least one additional MSTORE , along wit
h additional overhead for computing memory offset, and other parameters.

Remediation

It is recommended to short the strings passed inside require() and revert() to fit under 32 bytes . This will
decrease the gas usage at the time of deployment and at runtime when the validation condition is met.

Page 69 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_64

Bug Type

LONG REQUIRE/REVERT STRINGS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L99 � L99

File Location

contract.sol

Affected Code

contract.sol L99 � L99

98
 uint256 currentAllowance = allowances[from][msg.sender];

99
 require(currentAllowance >= value, "Transfer amount exceeds allowance");

100
 allowances[from][msg.sender] = currentAllowance.sub(value);

101
 return true;

Description

The require() and revert() functions take an input string to show errors if the validation fails.
This strings inside these functions that are longer than 32 bytes require at least one additional MSTORE , along wit
h additional overhead for computing memory offset, and other parameters.

Remediation

It is recommended to short the strings passed inside require() and revert() to fit under 32 bytes . This will
decrease the gas usage at the time of deployment and at runtime when the validation condition is met.

Page 70 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_65

Bug Type

LONG REQUIRE/REVERT STRINGS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L151 � L151

File Location

contract.sol

Affected Code

contract.sol L151 � L151

150
 require(to != address(0), "Invalid address");

151
 require(value > 0, "Transfer value must be greater than zero");

152
 require(balances[from] >= value, "Insufficient balance");

153

Description

The require() and revert() functions take an input string to show errors if the validation fails.
This strings inside these functions that are longer than 32 bytes require at least one additional MSTORE , along wit
h additional overhead for computing memory offset, and other parameters.

Remediation

It is recommended to short the strings passed inside require() and revert() to fit under 32 bytes . This will
decrease the gas usage at the time of deployment and at runtime when the validation condition is met.

Page 71 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_66

Bug Type

LONG REQUIRE/REVERT STRINGS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L195 � L195

File Location

contract.sol

Affected Code

contract.sol L195 � L195

194
 require(account != address(0), "Invalid address");

195
 require(lockDuration > 0, "Lock duration must be greater than zero");

196

197
 // Calculate the unlock timestamp based on the current block timestamp and the lock duration

Description

The require() and revert() functions take an input string to show errors if the validation fails.
This strings inside these functions that are longer than 32 bytes require at least one additional MSTORE , along wit
h additional overhead for computing memory offset, and other parameters.

Remediation

It is recommended to short the strings passed inside require() and revert() to fit under 32 bytes . This will
decrease the gas usage at the time of deployment and at runtime when the validation condition is met.

Page 72 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_67

Bug Type

LONG REQUIRE/REVERT STRINGS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L206 � L206

File Location

contract.sol

Affected Code

contract.sol L206 � L206

205
 function buyBYF(uint256 ethAmountInWei) external payable {

206
 require(ethAmountInWei > 0, "ETH amount must be greater than zero");

207

208
 // Implement mutex lock at the beginning of the function

Description

The require() and revert() functions take an input string to show errors if the validation fails.
This strings inside these functions that are longer than 32 bytes require at least one additional MSTORE , along wit
h additional overhead for computing memory offset, and other parameters.

Remediation

It is recommended to short the strings passed inside require() and revert() to fit under 32 bytes . This will
decrease the gas usage at the time of deployment and at runtime when the validation condition is met.

Page 73 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_68

Bug Type

LONG REQUIRE/REVERT STRINGS

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L234 � L234

File Location

contract.sol

Affected Code

contract.sol L234 � L234

233
 function sellBYF(uint256 byfAmount) external {

234
 require(byfAmount > 0, "BYF amount must be greater than zero");

235
 require(balances[msg.sender] >= byfAmount, "Insufficient BYF balance");

236

Description

The require() and revert() functions take an input string to show errors if the validation fails.
This strings inside these functions that are longer than 32 bytes require at least one additional MSTORE , along wit
h additional overhead for computing memory offset, and other parameters.

Remediation

It is recommended to short the strings passed inside require() and revert() to fit under 32 bytes . This will
decrease the gas usage at the time of deployment and at runtime when the validation condition is met.

Page 74 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_15

Bug Type

OPTIMIZING ADDRESS ID MAPPING

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L46 � L46

File Location

contract.sol

Affected Code

contract.sol L46 � L46

45

46
 mapping(address => uint256) private balances;

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

Description

Combining multiple address/ID mappings into a single mapping using a struct enhances storage efficiency, simplifies
code, and reduces gas costs, resulting in a more streamlined and cost-effective smart contract design.
It saves storage slot for the mapping and depending on the circumstances and sizes of types, it can avoid a Gsset �2
0000 gas) per mapping combined. Reads and subsequent writes can also be cheaper when a function requires both
values and they fit in the same storage slot.

Remediation

It is suggested to modify the code so that multiple mappings using the address�id parameter are combined into a st
ruct.

Page 75 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_16

Bug Type

OPTIMIZING ADDRESS ID MAPPING

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L47 � L47

File Location

contract.sol

Affected Code

contract.sol L47 � L47

46
 mapping(address => uint256) private balances;

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

Description

Combining multiple address/ID mappings into a single mapping using a struct enhances storage efficiency, simplifies
code, and reduces gas costs, resulting in a more streamlined and cost-effective smart contract design.
It saves storage slot for the mapping and depending on the circumstances and sizes of types, it can avoid a Gsset �2
0000 gas) per mapping combined. Reads and subsequent writes can also be cheaper when a function requires both
values and they fit in the same storage slot.

Remediation

It is suggested to modify the code so that multiple mappings using the address�id parameter are combined into a st
ruct.

Page 76 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_17

Bug Type

OPTIMIZING ADDRESS ID MAPPING

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L48 � L48

File Location

contract.sol

Affected Code

contract.sol L48 � L48

47
 mapping(address => mapping(address => uint256)) private allowances;

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

50

Description

Combining multiple address/ID mappings into a single mapping using a struct enhances storage efficiency, simplifies
code, and reduces gas costs, resulting in a more streamlined and cost-effective smart contract design.
It saves storage slot for the mapping and depending on the circumstances and sizes of types, it can avoid a Gsset �2
0000 gas) per mapping combined. Reads and subsequent writes can also be cheaper when a function requires both
values and they fit in the same storage slot.

Remediation

It is suggested to modify the code so that multiple mappings using the address�id parameter are combined into a st
ruct.

Page 77 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_18

Bug Type

OPTIMIZING ADDRESS ID MAPPING

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L49 � L49

File Location

contract.sol

Affected Code

contract.sol L49 � L49

48
 mapping(address => uint256) private unlockTime;

49
 mapping(address => bool) private mutex; // Mutex lock

50

51
 address payable public owner;

Description

Combining multiple address/ID mappings into a single mapping using a struct enhances storage efficiency, simplifies
code, and reduces gas costs, resulting in a more streamlined and cost-effective smart contract design.
It saves storage slot for the mapping and depending on the circumstances and sizes of types, it can avoid a Gsset �2
0000 gas) per mapping combined. Reads and subsequent writes can also be cheaper when a function requires both
values and they fit in the same storage slot.

Remediation

It is suggested to modify the code so that multiple mappings using the address�id parameter are combined into a st
ruct.

Page 78 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_72

Bug Type

PUBLIC CONSTANTS CAN BE PRIVATE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L36 � L36

File Location

contract.sol

Affected Code

contract.sol L36 � L36

35

36
 string public constant name = "BYFCOIN";

37
 string public constant symbol = "BYF";

38
 uint8 public constant decimals = 18;

Description

Public constant variables cost more gas because the EVM automatically creates getter functions for them and adds
entries to the method ID table. The values can be read from the source code instead.
The following variable is affected: name

Remediation

If reading the values for the constants are not necessary, consider changing the public visibility to private .

Page 79 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_73

Bug Type

PUBLIC CONSTANTS CAN BE PRIVATE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L37 � L37

File Location

contract.sol

Affected Code

contract.sol L37 � L37

36
 string public constant name = "BYFCOIN";

37
 string public constant symbol = "BYF";

38
 uint8 public constant decimals = 18;

39
 uint256 public totalSupply;

Description

Public constant variables cost more gas because the EVM automatically creates getter functions for them and adds
entries to the method ID table. The values can be read from the source code instead.
The following variable is affected: symbol

Remediation

If reading the values for the constants are not necessary, consider changing the public visibility to private .

Page 80 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_74

Bug Type

PUBLIC CONSTANTS CAN BE PRIVATE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L38 � L38

File Location

contract.sol

Affected Code

contract.sol L38 � L38

37
 string public constant symbol = "BYF";

38
 uint8 public constant decimals = 18;

39
 uint256 public totalSupply;

40
 uint256 public maxSupply;

Description

Public constant variables cost more gas because the EVM automatically creates getter functions for them and adds
entries to the method ID table. The values can be read from the source code instead.
The following variable is affected: decimals

Remediation

If reading the values for the constants are not necessary, consider changing the public visibility to private .

Page 81 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_1

Bug Type

USE OF SAFEMATH LIBRARY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L34 � L34

File Location

contract.sol

Affected Code

contract.sol L34 � L34

33
contract BYFCOIN {

34
 using SafeMath for uint256;

35

36
 string public constant name = "BYFCOIN";

Description

SafeMath library is found to be used in the contract. This increases gas consumption than traditional methods and
validations if done manually.
Also, Solidity 0.8.0 includes checked arithmetic operations by default, and this renders SafeMath unnecessary.

Remediation

We do not recommend using SafeMath library for all arithmetic operations. It is good practice to use explicit checks
where it is really needed and to avoid extra checks where overflow/underflow is impossible.
The compiler should be upgraded to Solidity version 0.8.0+ which automatically checks for overflows and underflo
ws.

Page 82 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_35

Bug Type

SMALLER DATA TYPES COST MORE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L70 � L70

File Location

contract.sol

Affected Code

contract.sol L70 � L70

69
 owner = payable(msg.sender); // Set the owner to the address that deploys the contract

70
 totalSupply = 1000000000 * 10 ** uint256(decimals);

71
 maxSupply = totalSupply;

72
 maxWalletBalance = 20000 * 10 ** uint256(decimals);

Description

Usage of smaller integer types such as uint8 , uint16 , int8 , or int16 in arithmetic operations incur additional
gas costs compared to the default uint and int types, which are typically uint256 and int256 respectively.

Remediation

Replace occurrences of smaller integer types (uint8 , uint16 , int8 , int16) with the default integer types (ui
nt or int). This can be achieved by simply using uint or int , which are automatically mapped to uint256 an
d int256 respectively in Solidity version 0.8.0 and above.

Page 83 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_36

Bug Type

SMALLER DATA TYPES COST MORE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L72 � L72

File Location

contract.sol

Affected Code

contract.sol L72 � L72

71
 maxSupply = totalSupply;

72
 maxWalletBalance = 20000 * 10 ** uint256(decimals);

73
 lockTimeBlocks = 105120000; // Equivalent to approximately 2 years with 15 seconds per block

74
 rate = 100000; // Initial rate: 100000 BYF per 1 ETH

Description

Usage of smaller integer types such as uint8 , uint16 , int8 , or int16 in arithmetic operations incur additional
gas costs compared to the default uint and int types, which are typically uint256 and int256 respectively.

Remediation

Replace occurrences of smaller integer types (uint8 , uint16 , int8 , int16) with the default integer types (ui
nt or int). This can be achieved by simply using uint or int , which are automatically mapped to uint256 an
d int256 respectively in Solidity version 0.8.0 and above.

Page 84 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_37

Bug Type

SMALLER DATA TYPES COST MORE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L79 � L79

File Location

contract.sol

Affected Code

contract.sol L79 � L79

78
 // Lock a portion of the owner's wallet balance for 2 years

79
 uint256 lockedBalance = 100000000 * 10 ** uint256(decimals);

80
 _lockTokens(msg.sender, lockedBalance, lockTimeBlocks);

81

Description

Usage of smaller integer types such as uint8 , uint16 , int8 , or int16 in arithmetic operations incur additional
gas costs compared to the default uint and int types, which are typically uint256 and int256 respectively.

Remediation

Replace occurrences of smaller integer types (uint8 , uint16 , int8 , int16) with the default integer types (ui
nt or int). This can be achieved by simply using uint or int , which are automatically mapped to uint256 an
d int256 respectively in Solidity version 0.8.0 and above.

Page 85 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_38

Bug Type

SMALLER DATA TYPES COST MORE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L84 � L84

File Location

contract.sol

Affected Code

contract.sol L84 � L84

83
 tradingAddress = address(this);

84
 balances[tradingAddress] = 100000000 * 10 ** uint256(decimals);

85
 }

86

Description

Usage of smaller integer types such as uint8 , uint16 , int8 , or int16 in arithmetic operations incur additional
gas costs compared to the default uint and int types, which are typically uint256 and int256 respectively.

Remediation

Replace occurrences of smaller integer types (uint8 , uint16 , int8 , int16) with the default integer types (ui
nt or int). This can be achieved by simply using uint or int , which are automatically mapped to uint256 an
d int256 respectively in Solidity version 0.8.0 and above.

Page 86 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_39

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L68 � L85

File Location

contract.sol

Affected Code

contract.sol L68 � L85

67

68
 constructor() {

69
 owner = payable(msg.sender); // Set the owner to the address that deploys the contract

70
 totalSupply = 1000000000 * 10 ** uint256(decimals);

71
 maxSupply = totalSupply;

72
 maxWalletBalance = 20000 * 10 ** uint256(decimals);

73
 lockTimeBlocks = 105120000; // Equivalent to approximately 2 years with 15 seconds per block

74
 rate = 100000; // Initial rate: 100000 BYF per 1 ETH

75

76
 balances[msg.sender] = totalSupply;

77

78
 // Lock a portion of the owner's wallet balance for 2 years

79
 uint256 lockedBalance = 100000000 * 10 ** uint256(decimals);

80
 _lockTokens(msg.sender, lockedBalance, lockTimeBlocks);

81

82
 // Allocate 100,000,000 BYF for trading

83
 tradingAddress = address(this);

84
 balances[tradingAddress] = 100000000 * 10 ** uint256(decimals);

85
 }

86

87
 function balanceOf(address account) external view returns (uint256) {

88
 return balances[account];

Page 87 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Description

The contract BYFCOIN is using the state variable decimals multiple times in the function .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 88 SolidityScan A security assessment report

Bug ID

SSB_318917_39

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L68 � L85

File Location

contract.sol

Affected Code

contract.sol L68 � L85

67

68
 constructor() {

69
 owner = payable(msg.sender); // Set the owner to the address that deploys the contract

70
 totalSupply = 1000000000 * 10 ** uint256(decimals);

71
 maxSupply = totalSupply;

72
 maxWalletBalance = 20000 * 10 ** uint256(decimals);

73
 lockTimeBlocks = 105120000; // Equivalent to approximately 2 years with 15 seconds per block

74
 rate = 100000; // Initial rate: 100000 BYF per 1 ETH

75

76
 balances[msg.sender] = totalSupply;

77

78
 // Lock a portion of the owner's wallet balance for 2 years

79
 uint256 lockedBalance = 100000000 * 10 ** uint256(decimals);

80
 _lockTokens(msg.sender, lockedBalance, lockTimeBlocks);

81

82
 // Allocate 100,000,000 BYF for trading

83
 tradingAddress = address(this);

84
 balances[tradingAddress] = 100000000 * 10 ** uint256(decimals);

85
 }

86

87
 function balanceOf(address account) external view returns (uint256) {

88
 return balances[account];

Page 89 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Description

The contract BYFCOIN is using the state variable balances multiple times in the function .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 90 SolidityScan A security assessment report

Bug ID

SSB_318917_46

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L96 � L102

File Location

contract.sol

Affected Code

contract.sol L96 � L102

95

96
 function transferFrom(address from, address to, uint256 value) external returns (bool) {

97
 _transfer(from, to, value);

98
 uint256 currentAllowance = allowances[from][msg.sender];

99
 require(currentAllowance >= value, "Transfer amount exceeds allowance");

100
 allowances[from][msg.sender] = currentAllowance.sub(value);

101
 return true;

102
 }

103

104
 function approve(address spender, uint256 value) external returns (bool) {

Description

The contract BYFCOIN is using the state variable allowances multiple times in the function transferFrom .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 91 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_47

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L110 � L114

File Location

contract.sol

Affected Code

contract.sol L110 � L114

109

110
 function increaseAllowance(address spender, uint256 addedValue) external returns (bool) {

111
 allowances[msg.sender][spender] = allowances[msg.sender][spender].add(addedValue);

112
 emit Approval(msg.sender, spender, allowances[msg.sender][spender]);

113
 return true;

114
 }

115

116
 function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool) {

Description

The contract BYFCOIN is using the state variable allowances multiple times in the function increaseAllowanc
e .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 92 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_48

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L116 � L122

File Location

contract.sol

Affected Code

contract.sol L116 � L122

115

116
 function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool) {

117
 uint256 currentAllowance = allowances[msg.sender][spender];

118
 require(currentAllowance >= subtractedValue, "Decreased allowance below zero");

119
 allowances[msg.sender][spender] = currentAllowance.sub(subtractedValue);

120
 emit Approval(msg.sender, spender, allowances[msg.sender][spender]);

121
 return true;

122
 }

123

124
 function withdrawTokens(uint256 amount) external onlyOwner {

Description

The contract BYFCOIN is using the state variable allowances multiple times in the function decreaseAllowanc
e .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 93 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_49

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L128 � L133

File Location

contract.sol

Affected Code

contract.sol L128 � L133

127

128
 function withdrawEther(uint256 amount) external onlyOwner {

129
 require(amount <= address(this).balance, "Insufficient contract balance");

130

131
 owner.transfer(amount); // Transfer the specified amount to the owner

132
 emit Withdraw(owner, amount); // Emit withdrawal event

133
 }

134

135
 function isUnlocked(address account) external view returns (bool) {

Description

The contract BYFCOIN is using the state variable owner multiple times in the function withdrawEther .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 94 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_50

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L145 � L182

File Location

contract.sol

Affected Code

contract.sol L145 � L182

144
 // Internal transfer function

145
 function _transfer(address from, address to, uint256 value) private {

146
 // Implement mutex lock at the beginning of the function

147
 require(!mutex[from], "Transfer in progress");

148
 mutex[from] = true;

149

150
 require(to != address(0), "Invalid address");

151
 require(value > 0, "Transfer value must be greater than zero");

152
 require(balances[from] >= value, "Insufficient balance");

153

154
 // Calculate the tax amount based on the tax rate

155
 uint256 taxAmount = (value.mul(taxRate)).div(100);

156

157
 // Deduct tax from transfer amount

158
 uint256 transferAmount = value.sub(taxAmount);

159

160
 if (from != owner && to != owner && balances[to].add(transferAmount) > maxWalletBalance) {

161
 uint256 excessTokens = balances[to].add(transferAmount).sub(maxWalletBalance);

162
 _lockTokens(to, excessTokens, lockTimeBlocks);

163
 transferAmount = transferAmount.sub(excessTokens);

164
 }

165

166
 balances[from] = balances[from].sub(value);

167
 balances[to] = balances[to].add(transferAmount);

168

169
 if (taxAmount > 0) {

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

Page 95 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

contract.sol L145 � L182

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

172
 // Transfer ETH tax to owner's wallet

173
 owner.transfer(ethTaxAmount);

174
 emit Transfer(from, owner, taxAmount);

175
 emit TaxDeducted(from, owner, ethTaxAmount); // Emit tax deduction event

176
 }

177

178
 emit Transfer(from, to, transferAmount);

179

180
 // Clear mutex lock at the end of the function

181
 mutex[from] = false;

182
 }

183

184
 // Function to calculate ETH amount equivalent to given BYF amount

Description

The contract BYFCOIN is using the state variable maxWalletBalance multiple times in the function _transfer .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 96 SolidityScan A security assessment report

Bug ID

SSB_318917_50

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L145 � L182

File Location

contract.sol

Affected Code

contract.sol L145 � L182

144
 // Internal transfer function

145
 function _transfer(address from, address to, uint256 value) private {

146
 // Implement mutex lock at the beginning of the function

147
 require(!mutex[from], "Transfer in progress");

148
 mutex[from] = true;

149

150
 require(to != address(0), "Invalid address");

151
 require(value > 0, "Transfer value must be greater than zero");

152
 require(balances[from] >= value, "Insufficient balance");

153

154
 // Calculate the tax amount based on the tax rate

155
 uint256 taxAmount = (value.mul(taxRate)).div(100);

156

157
 // Deduct tax from transfer amount

158
 uint256 transferAmount = value.sub(taxAmount);

159

160
 if (from != owner && to != owner && balances[to].add(transferAmount) > maxWalletBalance) {

161
 uint256 excessTokens = balances[to].add(transferAmount).sub(maxWalletBalance);

162
 _lockTokens(to, excessTokens, lockTimeBlocks);

163
 transferAmount = transferAmount.sub(excessTokens);

164
 }

165

166
 balances[from] = balances[from].sub(value);

167
 balances[to] = balances[to].add(transferAmount);

168

169
 if (taxAmount > 0) {

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

Page 97 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

contract.sol L145 � L182

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

172
 // Transfer ETH tax to owner's wallet

173
 owner.transfer(ethTaxAmount);

174
 emit Transfer(from, owner, taxAmount);

175
 emit TaxDeducted(from, owner, ethTaxAmount); // Emit tax deduction event

176
 }

177

178
 emit Transfer(from, to, transferAmount);

179

180
 // Clear mutex lock at the end of the function

181
 mutex[from] = false;

182
 }

183

184
 // Function to calculate ETH amount equivalent to given BYF amount

Description

The contract BYFCOIN is using the state variable balances multiple times in the function _transfer .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 98 SolidityScan A security assessment report

Bug ID

SSB_318917_50

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L145 � L182

File Location

contract.sol

Affected Code

contract.sol L145 � L182

144
 // Internal transfer function

145
 function _transfer(address from, address to, uint256 value) private {

146
 // Implement mutex lock at the beginning of the function

147
 require(!mutex[from], "Transfer in progress");

148
 mutex[from] = true;

149

150
 require(to != address(0), "Invalid address");

151
 require(value > 0, "Transfer value must be greater than zero");

152
 require(balances[from] >= value, "Insufficient balance");

153

154
 // Calculate the tax amount based on the tax rate

155
 uint256 taxAmount = (value.mul(taxRate)).div(100);

156

157
 // Deduct tax from transfer amount

158
 uint256 transferAmount = value.sub(taxAmount);

159

160
 if (from != owner && to != owner && balances[to].add(transferAmount) > maxWalletBalance) {

161
 uint256 excessTokens = balances[to].add(transferAmount).sub(maxWalletBalance);

162
 _lockTokens(to, excessTokens, lockTimeBlocks);

163
 transferAmount = transferAmount.sub(excessTokens);

164
 }

165

166
 balances[from] = balances[from].sub(value);

167
 balances[to] = balances[to].add(transferAmount);

168

169
 if (taxAmount > 0) {

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

Page 99 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

contract.sol L145 � L182

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

172
 // Transfer ETH tax to owner's wallet

173
 owner.transfer(ethTaxAmount);

174
 emit Transfer(from, owner, taxAmount);

175
 emit TaxDeducted(from, owner, ethTaxAmount); // Emit tax deduction event

176
 }

177

178
 emit Transfer(from, to, transferAmount);

179

180
 // Clear mutex lock at the end of the function

181
 mutex[from] = false;

182
 }

183

184
 // Function to calculate ETH amount equivalent to given BYF amount

Description

The contract BYFCOIN is using the state variable mutex multiple times in the function _transfer .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 100 SolidityScan A security assessment report

Bug ID

SSB_318917_50

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L145 � L182

File Location

contract.sol

Affected Code

contract.sol L145 � L182

144
 // Internal transfer function

145
 function _transfer(address from, address to, uint256 value) private {

146
 // Implement mutex lock at the beginning of the function

147
 require(!mutex[from], "Transfer in progress");

148
 mutex[from] = true;

149

150
 require(to != address(0), "Invalid address");

151
 require(value > 0, "Transfer value must be greater than zero");

152
 require(balances[from] >= value, "Insufficient balance");

153

154
 // Calculate the tax amount based on the tax rate

155
 uint256 taxAmount = (value.mul(taxRate)).div(100);

156

157
 // Deduct tax from transfer amount

158
 uint256 transferAmount = value.sub(taxAmount);

159

160
 if (from != owner && to != owner && balances[to].add(transferAmount) > maxWalletBalance) {

161
 uint256 excessTokens = balances[to].add(transferAmount).sub(maxWalletBalance);

162
 _lockTokens(to, excessTokens, lockTimeBlocks);

163
 transferAmount = transferAmount.sub(excessTokens);

164
 }

165

166
 balances[from] = balances[from].sub(value);

167
 balances[to] = balances[to].add(transferAmount);

168

169
 if (taxAmount > 0) {

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

Page 101 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

contract.sol L145 � L182

170
 // Convert tax amount to ETH

171
 uint256 ethTaxAmount = _calculateEthAmount(taxAmount);

172
 // Transfer ETH tax to owner's wallet

173
 owner.transfer(ethTaxAmount);

174
 emit Transfer(from, owner, taxAmount);

175
 emit TaxDeducted(from, owner, ethTaxAmount); // Emit tax deduction event

176
 }

177

178
 emit Transfer(from, to, transferAmount);

179

180
 // Clear mutex lock at the end of the function

181
 mutex[from] = false;

182
 }

183

184
 // Function to calculate ETH amount equivalent to given BYF amount

Description

The contract BYFCOIN is using the state variable owner multiple times in the function _transfer .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 102 SolidityScan A security assessment report

Bug ID

SSB_318917_78

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L185 � L190

File Location

contract.sol

Affected Code

contract.sol L185 � L190

184
 // Function to calculate ETH amount equivalent to given BYF amount

185
 function _calculateEthAmount(uint256 byfAmount) private view returns (uint256) {

186
 require(rate > 0, "Rate must be greater than zero");

187
 // Calculate ETH amount based on current rate

188
 uint256 ethAmount = byfAmount.div(rate);

189
 return ethAmount;

190
 }

191

192
 // Lock tokens for the specified duration using a timestamp

Description

The contract BYFCOIN is using the state variable rate multiple times in the function _calculateEthAmount .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 103 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_79

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L193 � L203

File Location

contract.sol

Affected Code

contract.sol L193 � L203

192
 // Lock tokens for the specified duration using a timestamp

193
 function _lockTokens(address account, uint256 amount, uint256 lockDuration) private {

194
 require(account != address(0), "Invalid address");

195
 require(lockDuration > 0, "Lock duration must be greater than zero");

196

197
 // Calculate the unlock timestamp based on the current block timestamp and the lock duration

198
 uint256 unlockTimestamp = block.timestamp + lockDuration;

199

200
 unlockTime[account] = unlockTimestamp;

201
 balances[account] = balances[account].sub(amount);

202
 emit Transfer(account, address(0), amount); // Event emitted after state change

203
 }

204

205
 function buyBYF(uint256 ethAmountInWei) external payable {

206
 require(ethAmountInWei > 0, "ETH amount must be greater than zero");

Page 104 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Description

The contract BYFCOIN is using the state variable balances multiple times in the function _lockTokens .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 105 SolidityScan A security assessment report

Bug ID

SSB_318917_80

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L205 � L230

File Location

contract.sol

Affected Code

contract.sol L205 � L230

205
 function buyBYF(uint256 ethAmountInWei) external payable {

206
 require(ethAmountInWei > 0, "ETH amount must be greater than zero");

207

208
 // Implement mutex lock at the beginning of the function

209
 require(!mutex[msg.sender], "Buy in progress");

210
 mutex[msg.sender] = true;

211

212
 // Calculate the amount of BYF tokens to be bought based on the provided ETH amount and the

current rate

213
 uint256 byfAmount = ethAmountInWei.mul(rate); // Convert from wei to BYF

214

215
 // Ensure that the contract has enough BYF tokens to fulfill the purchase

216
 require(balances[tradingAddress] >= byfAmount, "Insufficient BYF balance");

217

218
 // Transfer BYF tokens to the buyer

219
 balances[msg.sender] = balances[msg.sender].add(byfAmount);

220
 balances[tradingAddress] = balances[tradingAddress].sub(byfAmount);

221

222
 // Emit the Bought event

223
 emit Bought(msg.sender, byfAmount, ethAmountInWei);

224

225
 // Update the rate

226
 _updateRate(true);

227

228
 // Clear mutex lock at the end of the function

229
 mutex[msg.sender] = false;

230
 }

231

232
 // Function to sell BYF tokens for ETH

Description

The contract BYFCOIN is using the state variable balances multiple times in the function buyBYF .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Page 106 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Bug ID

SSB_318917_80

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L205 � L230

File Location

contract.sol

Affected Code

contract.sol L205 � L230

205
 function buyBYF(uint256 ethAmountInWei) external payable {

206
 require(ethAmountInWei > 0, "ETH amount must be greater than zero");

207

208
 // Implement mutex lock at the beginning of the function

209
 require(!mutex[msg.sender], "Buy in progress");

210
 mutex[msg.sender] = true;

211

212
 // Calculate the amount of BYF tokens to be bought based on the provided ETH amount and the

current rate

213
 uint256 byfAmount = ethAmountInWei.mul(rate); // Convert from wei to BYF

214

215
 // Ensure that the contract has enough BYF tokens to fulfill the purchase

216
 require(balances[tradingAddress] >= byfAmount, "Insufficient BYF balance");

217

218
 // Transfer BYF tokens to the buyer

219
 balances[msg.sender] = balances[msg.sender].add(byfAmount);

220
 balances[tradingAddress] = balances[tradingAddress].sub(byfAmount);

221

222
 // Emit the Bought event

223
 emit Bought(msg.sender, byfAmount, ethAmountInWei);

224

225
 // Update the rate

226
 _updateRate(true);

227

228
 // Clear mutex lock at the end of the function

229
 mutex[msg.sender] = false;

230
 }

231

232
 // Function to sell BYF tokens for ETH

Description

The contract BYFCOIN is using the state variable mutex multiple times in the function buyBYF .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Page 107 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Bug ID

SSB_318917_80

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L205 � L230

File Location

contract.sol

Affected Code

contract.sol L205 � L230

205
 function buyBYF(uint256 ethAmountInWei) external payable {

206
 require(ethAmountInWei > 0, "ETH amount must be greater than zero");

207

208
 // Implement mutex lock at the beginning of the function

209
 require(!mutex[msg.sender], "Buy in progress");

210
 mutex[msg.sender] = true;

211

212
 // Calculate the amount of BYF tokens to be bought based on the provided ETH amount and the

current rate

213
 uint256 byfAmount = ethAmountInWei.mul(rate); // Convert from wei to BYF

214

215
 // Ensure that the contract has enough BYF tokens to fulfill the purchase

216
 require(balances[tradingAddress] >= byfAmount, "Insufficient BYF balance");

217

218
 // Transfer BYF tokens to the buyer

219
 balances[msg.sender] = balances[msg.sender].add(byfAmount);

220
 balances[tradingAddress] = balances[tradingAddress].sub(byfAmount);

221

222
 // Emit the Bought event

223
 emit Bought(msg.sender, byfAmount, ethAmountInWei);

224

225
 // Update the rate

226
 _updateRate(true);

227

228
 // Clear mutex lock at the end of the function

229
 mutex[msg.sender] = false;

230
 }

231

232
 // Function to sell BYF tokens for ETH

Description

The contract BYFCOIN is using the state variable tradingAddress multiple times in the function buyBYF .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Page 108 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Bug ID

SSB_318917_81

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L233 � L258

File Location

contract.sol

Affected Code

contract.sol L233 � L258

233
 function sellBYF(uint256 byfAmount) external {

234
 require(byfAmount > 0, "BYF amount must be greater than zero");

235
 require(balances[msg.sender] >= byfAmount, "Insufficient BYF balance");

236

237
 // Implement mutex lock at the beginning of the function

238
 require(!mutex[msg.sender], "Sell in progress");

239
 mutex[msg.sender] = true;

240

241
 // Calculate the amount of ETH to be received based on the current rate

242
 uint256 ethAmount = byfAmount.div(rate);

243

244
 // Transfer BYF tokens from the seller

245
 balances[msg.sender] = balances[msg.sender].sub(byfAmount);

246

247
 // Transfer ETH to the seller

248
 payable(msg.sender).transfer(ethAmount);

249

250
 // Emit the Sold event

251
 emit Sold(msg.sender, byfAmount, ethAmount);

252

253
 // Update the rate

254
 _updateRate(false);

255

256
 // Clear mutex lock at the end of the function

257
 mutex[msg.sender] = false;

258
 }

259

260
 // Internal function to update the rate

Description

The contract BYFCOIN is using the state variable balances multiple times in the function sellBYF .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Page 109 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Bug ID

SSB_318917_81

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L233 � L258

File Location

contract.sol

Affected Code

contract.sol L233 � L258

233
 function sellBYF(uint256 byfAmount) external {

234
 require(byfAmount > 0, "BYF amount must be greater than zero");

235
 require(balances[msg.sender] >= byfAmount, "Insufficient BYF balance");

236

237
 // Implement mutex lock at the beginning of the function

238
 require(!mutex[msg.sender], "Sell in progress");

239
 mutex[msg.sender] = true;

240

241
 // Calculate the amount of ETH to be received based on the current rate

242
 uint256 ethAmount = byfAmount.div(rate);

243

244
 // Transfer BYF tokens from the seller

245
 balances[msg.sender] = balances[msg.sender].sub(byfAmount);

246

247
 // Transfer ETH to the seller

248
 payable(msg.sender).transfer(ethAmount);

249

250
 // Emit the Sold event

251
 emit Sold(msg.sender, byfAmount, ethAmount);

252

253
 // Update the rate

254
 _updateRate(false);

255

256
 // Clear mutex lock at the end of the function

257
 mutex[msg.sender] = false;

258
 }

259

260
 // Internal function to update the rate

Description

The contract BYFCOIN is using the state variable mutex multiple times in the function sellBYF .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Page 110 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Bug ID

SSB_318917_82

Bug Type

STORAGE VARIABLE CACHING IN MEMORY

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L261 � L272

File Location

contract.sol

Affected Code

contract.sol L261 � L272

260
 // Internal function to update the rate

261
 function _updateRate(bool isBuy) private {

262
 if (isBuy) {

263
 // Decrease rate by 0.4% after each buy

264
 rate = rate.mul(996).div(1000);

265
 } else {

266
 // Increase rate by 0.1% after each sell

267
 rate = rate.mul(1001).div(1000);

268
 }

269

270
 // Emit the RateUpdated event with the new rate

271
 emit RateUpdated(rate);

272
 }

273
}

Page 111 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Description

The contract BYFCOIN is using the state variable rate multiple times in the function _updateRate .
SLOADs are expensive �100 gas after the 1st one) compared to MLOAD / MSTORE �3 gas each).

Remediation

Storage variables read multiple times inside a function should instead be cached in the memory the first time (costin
g 1 SLOAD) and then read from this cache to avoid multiple SLOADs .

Page 112 SolidityScan A security assessment report

Bug ID

SSB_318917_33

Bug Type

USE SELFBALANCE�� INSTEAD OF ADDRESS�THIS�.BALANCE

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L129 � L129

File Location

contract.sol

Affected Code

contract.sol L129 � L129

128
 function withdrawEther(uint256 amount) external onlyOwner {

129
 require(amount <= address(this).balance, "Insufficient contract balance");

130

131
 owner.transfer(amount); // Transfer the specified amount to the owner

Description

In Solidity, efficient use of gas is paramount to ensure cost-effective execution on the Ethereum blockchain. Gas can
be optimized when obtaining contract balance by using selfbalance() rather than address(this).balance b
ecause it bypasses gas costs and refunds, which are not required for obtaining the contract's balance.

Remediation

To rectify this issue, developers are encouraged to replace instances of address(this).balance with selfbala
nce() wherever applicable. This optimization not only ensures streamlined gas operations but also contributes to su
bstantial cost savings during contract execution.

Page 113 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_70

Bug Type

VARIABLES DECLARED BUT NEVER USED

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L36 � L36

File Location

contract.sol

Affected Code

contract.sol L36 � L36

35

36
 string public constant name = "BYFCOIN";

37
 string public constant symbol = "BYF";

38
 uint8 public constant decimals = 18;

Description

The contract BYFCOIN has declared a variable name but it is not used anywhere in the code. This represents dead c
ode or missing logic.
Unused variables increase the contract's size and complexity, potentially leading to higher gas costs and a larger att
ack surface.

Remediation

To remediate this vulnerability, developers should perform a code review and remove any variables that are declared
but never used.

Page 114 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

Bug ID

SSB_318917_71

Bug Type

VARIABLES DECLARED BUT NEVER USED

Severity

Gas

Action Taken

Pending Fix

Detection Method

Automated

Line No.

L37 � L37

File Location

contract.sol

Affected Code

contract.sol L37 � L37

36
 string public constant name = "BYFCOIN";

37
 string public constant symbol = "BYF";

38
 uint8 public constant decimals = 18;

39
 uint256 public totalSupply;

Description

The contract BYFCOIN has declared a variable symbol but it is not used anywhere in the code. This represents dead
code or missing logic.
Unused variables increase the contract's size and complexity, potentially leading to higher gas costs and a larger att
ack surface.

Remediation

To remediate this vulnerability, developers should perform a code review and remove any variables that are declared
but never used.

Page 115 SolidityScan A security assessment report

https://etherscan.io/address/0xbB6f6F1A22b3A5E93EbdF2Ad001ED740B12695bC#code

5. Scan History

Critical High Medium Low Informational Gas

No Date Security Score Scan Overview

1. 2024�05�09 80.55 0 0 0 5 28 54

Page 116 SolidityScan A security assessment report

6. Disclaimer

The Reports neither endorse nor condemn any specific project or team, nor do they guarantee the security
of any specific project. The contents of this report do not, and should not be interpreted as having any
bearing on, the economics of tokens, token sales, or any other goods, services, or assets.

The security audit is not meant to replace functional testing done before a software release.

There is no warranty that all possible security issues of a particular smart contract(s) will be found by the
tool, i.e., It is not guaranteed that there will not be any further findings based solely on the results of this
evaluation.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical risk and
uncertainty. There is no warranty or representation made by this report to any Third Party in regards to the
quality of code, the business model or the proprietors of any such business model, or the legal compliance
of any business.

In no way should a third party use these reports to make any decisions about buying or selling a token,
product, service, or any other asset. It should be noted that this report is not investment advice, is not
intended to be relied on as investment advice, and has no endorsement of this project or team. It does not
serve as a guarantee as to the project's absolute security.

The assessment provided by SolidityScan is subject to dependencies and under continuing development.
You agree that your access and/or use, including but not limited to any services, reports, and materials, will
be at your sole risk on an as-is, where-is, and as-available basis. SolidityScan owes no duty to any third
party by virtue of publishing these Reports.

As one audit-based assessment cannot be considered comprehensive, we always recommend proceeding
with several independent manual audits including manual audit and a public bug bounty program to ensure
the security of the smart contracts.

Page 117 SolidityScan A security assessment report

